Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils.
نویسندگان
چکیده
Microorganisms that oxidize atmospheric methane in soils were characterized by radioactive labelling with (14)CH(4) followed by analysis of radiolabelled phospholipid ester-linked fatty acids ((14)C-PLFAs). The radioactive fingerprinting technique was used to compare active methanotrophs in soil samples from Greenland, Denmark, the United States, and Brazil. The (14)C-PLFA fingerprints indicated that closely related methanotrophic bacteria were responsible for the oxidation of atmospheric methane in the soils. Significant amounts of labelled PLFAs produced by the unknown soil methanotrophs coeluted with a group of fatty acids that included i17:0, a17:0, and 17:1omega8c (up to 9.0% of the total (14)C-PLFAs). These PLFAs are not known to be significant constituents of methanotrophic bacteria. The major PLFAs of the soil methanotrophs (73.5 to 89.0% of the total PLFAs) coeluted with 18:1 and 18:0 fatty acids (e.g., 18:1omega9, 18:1omega7, and 18:0). The (14)C-PLFAs fingerprints of the soil methanotrophs that oxidized atmospheric methane did not change after long-term methane enrichment at 170 ppm CH(4). The (14)C-PLFA fingerprints of the soil methanotrophs were different from the PLFA profiles of type I and type II methanotrophic bacteria described previously. Some similarity at the PLFA level was observed between the unknown soil methanotrophs and the PLFA phenotype of the type II methanotrophs. Methanotrophs in Arctic, temperate, and tropical regions assimilated between 20 and 54% of the atmospheric methane that was metabolized. The lowest relative assimilation (percent) was observed for methanotrophs in agricultural soil, whereas the highest assimilation was observed for methanotrophs in rain forest soil. The results suggest that methanotrophs with relatively high carbon conversion efficiencies and very similar PLFA compositions dominate atmospheric methane metabolism in different soils. The characteristics of the methane metabolism and the (14)C-PLFA fingerprints excluded any significant role of autotrophic ammonia oxidizers in the metabolism of atmospheric methane.
منابع مشابه
Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils.
Two methanotrophic bacteria, Methylobacter albus BG8 and Methylosinus trichosporium OB3b, oxidized atmospheric methane during batch growth on methanol. Methane consumption was rapidly and substantially diminished (95% over 9 days) when washed cell suspensions were incubated without methanol in the presence of atmospheric methane (1.7 ppm). Methanotrophic activity was stimulated after methanol (...
متن کاملEnvironmental impacts on the diversity of methane-cycling microbes and their resultant function
Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5-15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of meth...
متن کاملCharacterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake.
The global methane cycle includes both terrestrial and atmospheric processes and may contribute to feedback regulation of the climate. Most oxic soils are a net sink for methane, and these soils consume approximately 20 to 60 Tg of methane per year. The soil sink for atmospheric methane is microbially mediated and sensitive to disturbance. A decrease in the capacity of this sink may have contri...
متن کاملTwo isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2.
Methane-oxidizing bacteria (methanotrophs) attenuate methane emission from major sources, such as wetlands, rice paddies, and landfills, and constitute the only biological sink for atmospheric methane in upland soils. Their key enzyme is particulate methane monooxygenase (pMMO), which converts methane to methanol. It has long been believed that methane at the trace atmospheric mixing ratio of 1...
متن کاملActivity and abundance of methane-oxidizing bacteria in secondary forest and manioc plantations of Amazonian Dark Earth and their adjacent soils
The oxidation of atmospheric CH4 in upland soils is mostly mediated by uncultivated groups of microorganisms that have been identified solely by molecular markers, such as the sequence of the pmoA gene encoding the β-subunit of the particulate methane monooxygenase enzyme. The objective of this work was to compare the activity and diversity of methanotrophs in Amazonian Dark Earth soil (ADE, Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 65 9 شماره
صفحات -
تاریخ انتشار 1999